Discriminative manifold extreme learning machine and applications to image and EEG signal classification
نویسندگان
چکیده
Extreme learning machine (ELM) uses a non-iterative method to train single-hidden-layer feed-forward networks (SLFNs), which has been proven to be an efficient and effective learning model for both classification and regression. The main advantage of ELM lies in that the input weights as well as the hidden layer biases can be randomly generated, which contributes to the analytical solution of output weights. In this paper, we propose a discriminative manifold ELM (DMELM) by simultaneously considering the discriminative information and geometric structure of data; specifically, we exploit the discriminative information in the local neighborhood around each data point. To this end, a graph regularizer based on a newly designed graph Laplacian to characterize both properties is formulated and incorporated into the ELM objective. In DMELM, the output weights can also be obtained in analytical form. Extensive experiments are conducted on image and EEG signal classification to evaluate the effectiveness of DMELM. The results show that DMELM consistently achieves better performance than original ELM and yields promising results in comparison with several state-of-the-art algorithms, which suggests that the discriminative as well as manifold information are beneficial to classification.
منابع مشابه
An unsupervised discriminative extreme learning machine and its applications to data clustering
Extreme Learning Machine (ELM), which was initially proposed for training single-layer feed-forward networks (SLFNs), provides us a unified efficient and effective framework for regression and multiclass classification. Though various ELM variants were proposed in recent years, most of them focused on the supervised learning scenario while little effort was made to extend it into unsupervised l...
متن کاملMental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection From EEG Signals
Introduction: Mental arithmetic analysis based on Electroencephalogram (EEG) signal for monitoring the state of the user’s brain functioning can be helpful for understanding some psychological disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, or dyscalculia where the difficulty in learning or understanding the arithmetic exists. Most mental arithmetic recogni...
متن کاملClassification of Right/Left Hand Motor Imagery by Effective Connectivity Based on Transfer Entropy in EEG Signal
The right and left hand Motor Imagery (MI) analysis based on the electroencephalogram (EEG) signal can directly link the central nervous system to a computer or a device. This study aims to identify a set of robust and nonlinear effective brain connectivity features quantified by transfer entropy (TE) to characterize the relationship between brain regions from EEG signals and create a hierarchi...
متن کاملImage Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کاملImage alignment via kernelized feature learning
Machine learning is an application of artificial intelligence that is able to automatically learn and improve from experience without being explicitly programmed. The primary assumption for most of the machine learning algorithms is that the training set (source domain) and the test set (target domain) follow from the same probability distribution. However, in most of the real-world application...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurocomputing
دوره 174 شماره
صفحات -
تاریخ انتشار 2016